TOPIC 2:
Sustainable Polymers

Jenny Alongi
jenny.alongi@unimi.it
Dipartimento di Chimica
Università degli Studi di Milano
Contents & Participants

01 Bio-derived Polymers from Natural α-Amino Acids
02 Polymeric Materials from Renewable Sources
03 Assessment of Eco-toxicity of Polymers

Jenny Alongi jenny.alongi@unimi.it
Stefano Gazzotti stefano.gazzotti@unimi.it
Amedea Manfredi amedea.manfredi@unimi.it
Marco Ortenzi marco.ortenzi@unimi.it
Elisabetta Ranucci elisabetta.ranucci@unimi.it

Special Issue in Polymers by MDPI: “Sustainable Polymeric Materials and Eco-Design”: https://www.mdpi.com/journal/polymers/special_issues/CNE10352E4
Bio-derived Polymers from α-Amino Acids

• **Challenges & goals**
 - Synthesis of eco-friendly, bio-derived flame retardants (FRs) for cellulosic fabrics and PU foams.
 - Synthesis of UV stabilizers for cellulose articles for protective garments use and Cultural Heritage conservation.

• **State of the art**
 - \times In 2020 4.0 million fires with 20.8 thousand deaths
 - \Rightarrow FRs have strong impact on humans and environment!
 - \times Cellulosic substrates undergo light-induced yellowing
 - \times \Rightarrow current UV stabilizers for protective garments.
Bio-derived Polymers from α-Amino Acids

\[
\begin{align*}
\text{GLY, ALA, VAL, LEU, HIS, SER, ASN, GLN, ASP and GLU}
\end{align*}
\]

- **Research achievements**
 - Green and easily scalable synthesis of bio-derived and bio-inspired polyamidoamines (PAAs).

 - PAAs act as intumescent FR for cotton, cotton/PET and PU.

 - In dramatically accelerated tests PAAs protected cotton fabric from the photodegradation.
Bio-derived Polymers from α-Amino Acids

- **Research achievements**

 - Green and easily scalable synthesis of bio-derived and bio-inspired polyamidoamines (PAAs).
 - PAAs act as intumescent FR for cotton, cotton/PET and PU.
 - In dramatically accelerated tests PAAs protected cotton fabric from the photodegradation.
• **Research achievements**

- Green and easily scalable synthesis of bio-derived and bio-inspired polyamidoamines (PAAs).

- PAAs act as intumescent FR for cotton, cotton/PET and PU.

- In dramatically accelerated tests PAAs protected cotton fabric from the photodegradation.
Polymeric Materials from Renewable Sources

• **Challenges & goals**
 ✓ Design of new polymeric materials for high value-added applications from low-cost natural polymers.

• **State of the art**
 ✗ There is growing interest in using cheap biopolymers in the production of bioplastics.
 ✗ These may be polysaccharides, e.g. starch, cellulose, chitin/chitosan or proteins, e.g. casein, whey, collagen, zein or silk.
 ✗ Applications range from food packaging to 3D printing, biomedical, cosmetics and others...
• **Research achievements**

- Synthesis of “lactide equivalents” comonomers for expanding PLA applications. Functionalization of PLA with bio-based molecules, e.g. carvacrol, cardanol, eugenol.

- PLLA/reinforced composite hydrogels for tissue engineering.

- Tough silk/reinforced composite hydrogel membranes for the absorption of Cr(VI) from water.
Research achievements

- Synthesis of “lactide equivalents” comonomers for expanding PLA applications. Functionalization of PLA with bio-based molecules, e.g. carvacrol, cardanol, eugenol.
- PLLA/reinforced composite hydrogels for tissue engineering.
- Tough silk/reinforced composite hydrogel membranes for the absorption of Cr(VI) from water.
Polymeric Materials from Renewable Sources

Research achievements

- Synthesis of “lactide equivalents” comonomers for expanding PLA applications. Functionalization of PLA with bio-based molecules, e.g. carvacrol, cardanol, eugenol.

- PLLA/reinforced composite hydrogels for tissue engineering.

- Tough silk/reinforced composite hydrogel membranes for the absorption of Cr(VI) from water.
Assessment of Eco-toxicity of Polymers

• **Challenges & goals**
 - Studies on the eco-compatibility of synthetic polymers in different environments.
 - Establishing specific tests to achieve this goal.

• **State of the art**
 - Growing number of studies on the eco-toxicity of polymers & microplastics released in the environment.
 - Standard tests for macro- and microplastics are lacking.
 - Many literature data on microplastics are not significant.
 - Toxicity varies according to:
 - polymer structure
 - physico-chemical properties
 - environment (soil, waters)
 - nature of the degradation products
Assessment of Eco-toxicity of Polymers

- **Research achievements**
 - Degradation studies on plastics bottle use and microplastics release
 - Tests on invertebrates: sea urchins, giant snails and Manila clams.
 - Degradation studies in model environments.
 - Phyto-toxicity tests through seed germination tests.
 - Tests on vertebrates: Zebra fish.

HDPE cap heavily deteriorates after 100 opening/closing cycles

PET bottleneck is almost unchanged
Assessment of Eco-toxicity of Polymers

- Research achievements
 - Degradation studies on plastics bottle use and microplastics release
 - Tests on invertebrates: sea urchins, giant snails and Manila clams.
 - Degradation studies in model environments.
 - Phyto-toxicity tests through seed germination tests.
 - Tests on vertebrates: Zebra fish.
Assessment of Eco-toxicity of Polymers

• Research achievements
 ✓ Degradation studies on plastics bottle use and microplastics release
 ✓ Tests on invertebrates: sea urchins, giant snails and Manila clams.
 ✓ Degradation studies in model environments.
 ✓ Phyto-toxicity tests through seed germination tests.
 ✓ Tests on vertebrates: Zebra fish.
Assessment of Eco-toxicity of Polymers

- **Research achievements**
 - Degradation studies on plastics bottle use and microplastics release
 - Tests on invertebrates: sea urchins, giant snails and Manila clams.
 - Degradation studies in model environments.
 - **Phyto-toxicity tests through seed germination tests.**
 - Tests on vertebrates: Zebra fish.

![Diagram showing germination tests](image)

- **Degradation studies on plastics bottle use and microplastics release**
- **Phyto-toxicity tests through seed germination tests.**
- Tests on vertebrates: Zebra fish.